

Optotune tunable optics for Laser processing

Enabling 3D laser processing, beam wobbling and inline inspection

June 2023
Dr Branislav Timotijevic, BD Manager
Bernstrasse 388 |CH-8953 Dietikon | Switzerland
Phone +4158856 3000 | www.optotune.com | info@optotune.com

Optotune provides four core product lines

Laser speckle reducers

Beam shifting devices

Beam steering devices (2D mirrors)

Optotune products in Laser processing applications

2.5 \& 3D laser processing

High precision 2D beam control

Inline inspection and AF

2D mirrors for beam steering

Products, applications and benefits

EL-10-42: 3D laser lens

- Laser beam focusing
- High-end laser marking
- Medical lasers

Benefits: large z-range, green and NIR, high repeatability, lifetime, compact, fast

FMR: Fine steering 2D mirror

- Laser soldering
- Laser beam realignment
- Laser welding / cutting

Benefits: high angular resolution, fast, 2D programmable, small, low weight, customizable

EL-16-40: Imaging lens

- Laser process inspection (both low and high power)

Benefits: compact, fast, durable, AF, distance measurement, easy to integrate in most camera systems

Products, applications and benefits

BSW: Beam shifting window

- Fibre coupling
- Colour cameras
- Hyperspectral imaging

Benefits: 2-axis beam shifting, precise, fast, high transmission, lifetime

MR: Large angle 2D mirror

- < 1 W 2D beam steering
- Free space communication
- Potential for higher power
(tunable lens not compulsory)

Benefits: large angle, large mirror, compact package, built-in feedback, 1 optical surface for 2 DOF, lifetime

WIP: EL-7-20 / EL-12-30

- Small dpt range laser processing < 50 W

Benefits: fast, low thermal sensitivity, plano-convex to planoconcave, low power consumption, lifetime

EL-10-42-OF specs in the NIR and at 532nm

Product	$\begin{aligned} & \text { EL-10-42-OF-NIR } \\ & \text { EL-10-42-OF-532 } \end{aligned}$	unit
Clear aperture	10	mm
Maximum operating average laser power @ NIR (950-1100 nm) @ 532 nm	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	W
Optical power: tuning range	-2.0 to +2.0	dpt
Optical power: repeatability	typical: < 0.02	
Optical power: long term stability 8h	0.04	
Wavelength range (NIR)	950-1100	nm
Wavefront error @ 1064 nm @ 532 nm	$\begin{aligned} & <0.15 \\ & <0.3 \end{aligned}$	λ RMS
Transmission NIR (950-1100 nm) @ 532 nm	$\begin{aligned} & >94 \% \\ & >95 \% \end{aligned}$	
Long term radiation damage @ 1064 nm: $40 \mathrm{~mJ} / \mathrm{cm} 2$ at 20 kHz	No effect after 2000 h	
Damage threshold @ 1064 nm : 125 ns -pulsed at 50 kHz 10 ps -pulsed at 50 kHz	$\begin{gathered} 2.6 \\ 2.05 \end{gathered}$	$\mathrm{J} / \mathrm{cm}^{2}$
Response time with EL-E-OF-A analog board	$\begin{aligned} & \text { 80\% step: } 12 \\ & \text { 20\% step: } 6 \end{aligned}$	ms
Response time with Scaps digital board	80\% step: 8 20\% step: 4.5	ms
Focal length resolution	Continuous (depends on control electronics)	
Lifecycles (10\%-90\% sinusoidal)	$>1^{\prime} 000{ }^{\prime} 000{ }^{\prime} 000$	

Typical parameters in a marking system with $f=160 \mathrm{~mm}$ f-theta lens

Max z-tuning range	100	mm
Repeatability $(10 \%-90 \% \text { step })^{*}$	typical $:<500$	$\mu \mathrm{~m}$
Long term drift over $8 \mathrm{~h}^{*}$	max: <1000	

All EL-10-42-OF lenses undergo extensive OQC tests including laser testing

Analog and digital drivers for EL-10-42-OF

	EL-E-OF-A (2.5D)	SCAPS Optotune-DSD-2-0 (3D)
		XY2-100 integration by USB calibration interface Only one power supply Thermal Control and lens status signal
Interface	Analog 0-5V	Digital XY2-100, X-Y bi-directional Scaps interface
Controller	Microprocessor based	FPGA based
Intelligence	Standard PID control	Model based drive algorithm
80\% step response	12 ms	8 ms
Demonstrated processing speed on 45deg slope (160 mm F-Theta)	$0.7 \mathrm{~m} / \mathrm{s}$	6m/s
Suitable operation	Z-Stepping for 2D processing	True 3D processing

2.5D and 3D laser processing with EL-10-42-OF

2.5D Z-stepping

3D laser focus control

Benefits:

- Compact
- Long lifetime
- High z-speed
- Constant spot
- LAM

Low-power laser applications with MR mirrors

Benefits:

- Large angle
- Small footprint
- Single optical surface

Applications:

- Laser templating
- Free space communication
- Low-power beam steering

MR-15-30 (quasi-static)

MR-10-30 (resonant)	
Mirror size	10 mm
Mechanical tilt - fast axis (half angle)	12.5°
Full-scale bandwidth - fast axis	280 Hz
Mechanical tilt - slow axis (half angle)	25°
Full-scale bandwidth - slow axis	20 Hz
Mech. Repeatability RMS typical	$30-100 \mathrm{\mu rad}$ (slow axis)
Footprint	30×14.5
Position feedback	yes
Laser power	up to 1 W

High-power, fine laser steering with FMR mirrors

Benefits

- Compact
- Long lifetime
- Fast
- Precise
- Programmable pattern

Applications:

- Laser cutting and welding
- Laser soldering, cleaning and ablation
- Laser cavity alignment (Q-switching)
- Point and shoot / raster (lissajous) scanning

FMR-20	
Mirror size	$20 \times 20 \mathrm{~mm}$
Mechanical tilt angle (p-p)	0.4°
Motion pattern	2D programmable
Bandwidth	250 Hz @ $0.2^{\circ} \mathrm{p}-\mathrm{p}$
Mirror coating	Au, dielectric, custom
Laser wavelength	UV, VIS, NIR, IR
Laser power	Several kW*
Position feedback	Open loop
External sensor for feedback	Can be added
Power consumption	$<4 W$
Size (width \times height \times depth	$47 \times 35 \times 3.65 \mathrm{~mm}$
Weight	9 g

Inline inspection with Distance measurement using EL-16-40

Depth from focus: A focus tunable lens in conjunction with an autofocus algorithm can reliably measure distance to an arbitrary object in less than a second

Inline inspection up to 50W using EL-10-42-OF

