PROTOTYPE

Copyright © 2023 Optotune

One-axis-resonant dual axis fast steering mirror MR-10-30

Optotune's dual axis resonant fast steering mirror series MR-10-30 is the ideal choice for applications requiring fast scanning and large deflection angles in a compact form factor. With a mirror size of 10 mm the MR-10-30 achieves up to $\pm 25^{\circ}$

mechanical tilt in the linear axis and up to $\pm 12.5^{\circ}$ mechanical tilt in the resonant axis, resulting in a 100° x 50° field of view. The mirror includes a position feedback system which allows accurate position read-out and control.

The actuator is based on proven technologies. In contrast to galvo mirror systems, the virtual rotation point is very close to the mirror surface. The mirror can be fabricated with various coatings such as protected gold or protected silver.

Advantages

Applications

- Large Scan Angle
 Compact
 Medical (OCT, confocal microscopy)
 - Precise

The following table outlines the specifications of our standard MR-10-30. Custom mirror coatings and resonant frequencies are possible.

Scientific

Specifications

Mirror flatness

Mechanical specifications

Actuator Type	4-Quadrant (2 axis, bi-directional)		
Mechanical tilt angle DC	± 25 X axis; N/A Y axis	0	
Mechanical tilt angle dynamic	± 25 X axis; ± 12.5 Y axis	0	
Mirror diameter	10	mm	
Center of rotation to mirror surface	0.4	mm	
External diameter	35.4	mm	
Height	14.5	mm	
Weight	29.3	g	
Zero drift (typical)	100	µrad/°C	RMS value over entire FOV
Full scale bandwidth	20 static axis	Hz	
Sine wave	approx. 250 resonant axis		
Mechanical clamping	screws		
Magnetic shielding	yes		
Optical specifications			
Surface finish	Protected gold and protected silver, other coatings available as custom		
Reflectivity	Protected gold (45° AOI): - Avg >95% (800 nm < λ < 2 μm)		
	Protected Silver (45° AOI): - Avg >96% (450 nm < λ < 2 μm)		
Surface quality	60-40	Scratch-Dig	

λ/2

@549nm (ISO Norm

10110)

PROTOTYPE

Copyright © 2023 Optotune

Electrical specifications

Control interface	Analog interface for driver coils and for feedback readout		
Actuation current slow (quasi-static) axis	< 0.2 DC, 1 peak	А	
Actuation current fast (resonant) axis	< 0.15 AC	А	
Max continuous current (RMS)	0.3	А	Per coil
Coil resistance	11	Ohm	Typical
Coil inductivity	6	mH	Typical
Position feedback supply current (@1.5V)	30	mA	
Typical feedback current	0.1	mA	
Temperature sensor	LM75B		I2C-Address: 0x48 (+R/W bit)
EEPROM	M24C08		I2C-Addresses: 0x50 to 0x53 (+R/W bit)
Environmental specifications			
Operating temperature	-20 to +85	°C	for higher temp. ranges con- tact Optotune
Storage temperature	-40 to +85	°C	for higher temp. ranges con- tact Optotune
Rel. humidity	85	%	
Cycle life	> 10^9	cycles	resonant axis, ongoing

Overview of configurations

g
ted gold
ted silver

Static Response

Current vs Angle (quasi-static axis)

Figure 1: Typical mechanical tilt angle versus applied current for quasi-static axis.

Copyright © 2023 Optotune

Dynamic response

PROTOTYPE

Figure 2: Ringdown spectrum of the resonant axis.

Figure 3: Typical response of resonant axis with sinusoidal excitation and different driving currents. The dashed black line corresponds to the specified maximum range of ±12.5°.

Figure 4: Typical magnitude response of slow axis with sinusoidal excitation and 15 mA excitation amplitude.

Page 3 of 7

PROTOTYPE

Copyright © 2023 Optotune

Maximum oscillation frequency

Figure 5: Max. oscillation speed (sinus) of quasi-static axis as a function of mechanical half-angle and driving current. The total optical FOV is 4 times the mechanical half-angle.

Reflectivity

Figure 6: Reflectivity for different wavelengths at 0° angle of incidence (AOI).

Page 4 of 7

PROTOTYPE

Copyright © 2023 Optotune

Mounting

Figure 7: Mechanical drawing of MR-10-30 (unit: mm). The X-Axis corresponds to the quasi-static axis and the Y-Axis to the resonant axis.

When screwed in place, make sure the mirror is in firm contact with the heat sink. It is recommended that the heatsink can dissipate about 2-5 W.

In terms of lateral alignment, the outer diameter of the housing can serve as an alignment feature.

Packaging

Figure 8: MR-10-30 tray design

Single units ship in cardboard boxes. Larger volumes ship in ESD-safe and stackable PET trays of 25 MR-10-30 units each, sealed in a vacuum bag.

Page 5 of 7

PROTOTYPE

Copyright © 2023 Optotune

Electrical connection

Pin	Function	Value	Pin	Function	Value
	Position feed-				
	back supply			100	2.21
1	Cathode	40 mA	11	VDD	3.3V
	Position feed-	1.5 V			
2	ode		12	SCL	Digital 3.3 V
3	V Coil I		13	SDA	Digital 3.3 V
4			14	GND	
				Position feedback	
5	V Coil		15	Anode	
				Position feedback	
6		+10	16	Y2 Cathode	
		+ 15 V		Position feedback	
7	X Coil +	- 15 0	17	Y1 Cathode	currents
				Position feedback	(μA range)
8			18	X2 Cathode	
				Position feedback	
9	X Coil -		19	X1 Cathode	
				Position feedback	
10			20	Anode	

Table 1: Electrical pinout MR-15-30. The X Coil controls the quasi-static axis, the Y Coil the resonant axis.

Environmental testing

The MR-10-30/MR-15-30 is going through environmental and accelerated aging tests as outline in the table below.

Test	MR-10-30/ MR-15-30
Mechanical cycling: > 1 billion cycles of the resonant axis	Passed
Temperature cycling – non-operational 85°C/60h, -40°/60h; 2 cycles, non-operational No significant change in repeatability	Passed
Temperature cycling –operational -20°C 90°C operational (steady state jumps over entire FOV every 5sec, 20 cycles 60hours)	Passed
Temperature drift & heating effects Temperature drift: approx. 100 μrad/K No significant self-heating at low frequency	Passed
Temperature & Humidity 85°C / 45% (duration: 1 week)	Passed

Table 2: Environmental tests performed on the MR-10-30/MR-15-30

Page 6 of 7

Copyright © 2023 Optotune

2D raster scan

The MR-10-30 is specifically designed for raster-scanning applications such as LiDAR. By overlaying a linear scan pattern on the quasi-static axis with the resonant oscillation, a dense line-scan can be generated.

PROTOTYPF

Figure 9: Example for a dense scan pattern. A fast sinusoidal oscillation in the resonant axis at 250 Hz overlays a linear, triangular pattern at 10 Hz in the quasi-static axis.

Safety and compliance

The product fulfills the RoHS, REACH, CE and flammability UV94 V-0 compliance standards. The customer is solely responsible to comply with all relevant safety regulations for integration and operation, including EMC compliance.

For more information on optical, mechanical and electrical parameters, please contact sales@optotune.com.