

Optotune Machine Vision portfolio introduction

April 2023

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland Phone +41 58 856 3011 | www.optotune.com | info@optotune.com

Product Portfolio

Our solutions for Machine Vision

Focus tunable lenses

- Fast autofocus
- Fast detection
- Image stacking

Beam shifting devices

- Fast transition time
- Reliable over time
- Beam shifts up to 4.8um

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

In action: How current influences the membrane shape

See also: <u>https://www.optotune.com/tunable-lenses</u>

The ideal focusing solution for machine vision

optotune

The natural way to focus: Like your eyes but faster!

Specifications

- Apertures from 3 to 30mm
- Large working distance range
- Low dispersion (Abbe# V>100)
- >10⁹ cycles
- High repeatability <0.1 dpt
- Response time of few milliseconds

Benefits

- Sensor sizes 1/3" to 40mm supported
- Maximum flexibility with low f-numbers
- No color aberrations
- Long Lifetime
- One-time calibration
- Higher throughput

Both off-the-shelf lens combinations and integrated, optimized designs are available

Our liquid lenses for machine vision applications

	EL-3-10-TC	EL-10-30-TC	EL-10-30-C(i)	EL-12-30-TC	EL-16-40-TC
		Coptoture		Concerno	
Focal power range (dpt)	-13 to +13	+8 to +20	-1.5 to +3.5 +5 to +10	-6 to +10	-2 to +3
Clear aperture (mm)	3	10	10	12	16
Outer diameter (mm)	10	30	30	30	40
Gravity-induced coma single liquid version (λ RMS)*	<0.05	0.4	0.2	0.175	0.43
Gravity-induced coma GC version (λ RMS)*	<0.05	NA	NA	<0.05	<0.05
Status of GC version	Not needed	Not planned	Not planned	Samples available, MP in 2023	Samples available, MP Q4 2022

* Measured over 80% of the clear aperture @530nm

Lens controllers for easy integration

	EL-E-4	EL-E-4i	ICC-4-C	Gardasoft CL-180	ECC-1C
	Copiorune LENS DEVERS	-Coproture Lites sevena			
Application	R&D, portable systems	R&D, portable systems	Industrial 24/7 operation	Industrial 24/7 operation	OEM
Current range (mA)	-290 to + 290	-290 to + 290	-500 to +500	-400 to +400	-300 to +300
Supply Voltage (V)	5	5	24	24	5-24V
Interfaces	USB	USB	USB, Ethernet, Analog 0-10V, UART, I2C	GigE, RS232, Analog 0-10V	I2C, UART, Analog 0-10V
Connection	FPC	Hirose	Hirose	Hirose	Hirose
Channel(s)	1	1	4	1	1
SDKs	C#, LabVIEW, Python	C#, LabVIEW, Python	C#, C++, Python	Triniti SDK, C#, C++, VB	C#, Python

Lens module example: 12 mm lens with integrated EL-16-40 by VST

ELM-12-2.8-18-C

High resolution and large field of view

• Ideal for code reading and OCR applications e.g. in logistics

Working distance range from 250mm to infinity

- Best MTFs between 500 to 1000mm
- High optical leverage (1.13m/dpt)

Resolution (for 2.4um pixels)

- Image center at Nyquist limit (up to 208 lp/mm)
- Image corners between 90-168 lp/mm
- Best resolution at F/5.6

Image quality

- No vignetting up to 1.1" format at F/2.8
- Barrel distortion, which can be corrected digitally

Resources

Test report

Current solutions To focus along Z-axis

	Motorized Z	Piezo Z	Focus Tunable Lens	
			Cooperations and the second se	rs
Price	\$\$	\$\$\$	\$	3x cheaper than piezo's
Speed	+	+++	+++ (100Hz)	100x faster than motorized Z
Travel Range	+++	+	++	e.g. 600 µm with 40x objective
Compactness	+	++	+++	No table-top controller
Vibrations	+	+	+++	No vibrations
Thermal Drift	+	+	+++	Temp. comp. sensor

optotune

Typical applications & market potential

Package sorting

Robot vision

Medical

Entocentric (fixed focal length) lenses

Bin picking

Bottle inspection

Jewel inspection

Contact lens inspection

Electronics inspection

Solar Panels

Telecentric lenses

CCM inspection

IC inspection

Particle Counting

Product Portfolio

Our solutions for Machine Vision

- Fast autofocus
- Fast detection
- Image stacking

Beam shifting devices

- Fast transition time
- Reliable over time
- Beam shifts up to 4.8um

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Optotune's fast steering mirrors

Specifications

- 2D deflection with a single reflective surface
- Large scanning angle of +/-25°
- Rotation point close to center of mass
- >1B cycles with robust voice-coil actuation
- High repeatability of 40 µrad (optical feedback)
- Response time of few milliseconds

Benefits

- Most compact scanning solution
- Field of view up to 100°
- Insensitive to shock & vibrations
- Long Lifetime
- Accurate closed loop control
- Vector scanning, point & shoot with high throughput

Optotune has extended its mirror portfolio

	MR-15-30	MR-10-30	FMR-20	MR-50
# axis	2D	2D	2D	1D
Mirror size	Ø15 mm	Ø10 mm	20x20 mm ²	55x50 mm ²
Mechanical tilt – 1. axis (half angle)	25°	12.5°	0.2°	30°
Full-scale bandwidth – 1. axis	20 Hz	250 Hz	250 Hz	10 Hz (triangular)
Mechanical tilt – 2. axis (half angle)	25°	25°	0.2°	
Full-scale bandwidth – 2. axis	20 Hz	20 Hz	250 Hz	
Mech. Repeatability RMS	40 µrad	40 µrad (1. axis)		600 μ rad estimated
Resolution	22 µrad	22 µrad	4 μrad	150 µrad
Footprint	30x14.5	30x14.5	50.8 x 50.8 x 12	67.5 x 70 x 45
Position feedback	yes	yes	no	yes

Current solutions

To steer your beams

	MEMS	Galvos	Fast Steering Mirrors
Real 2D	Yes	No (2x 1D)	Yes
Mirror size	3-7 mm	5-30 mm	15 mm/10 mm
Package size	15-30 mm	60-240 mm	30 mm
Mech. half angle	5-11 deg	10 deg	25 deg
Repeatability	10-500 microrad	2-15 microrad	40 microrad
Full stroke frequency	100-300 Hz	300-600 Hz	20 Hz

Typical applications & market potential

Image stitching

Surveillance

Driver attention monitoring

Traffic sign monitoring

FOV expansion

Product Portfolio

Our solutions for Machine Vision

- Fast autofocus
- Fast detection
- Image stacking

Beam shifting devices

- Fast transition time
- Reliable over time
- Beam shifts up to 4.8um

Beam steering devices

- Sole reflection
- Wide angular range
- Compact

Beam shifting windows for resolution enhancement

Specifications

- Clear apertures from 9 to over 40 mm
- Tilt angle up to 0.9°, beam shifts up to 5.4 μm
- Transition times down to 1ms
- Beam shift accuracy of 10%, pre-calibrated
- Acoustic noise below 20 dBA at 30cm
- Lifetime beyond 20'000 hours

Benefits

- Several DLP and image sensor sizes supported
- Pixel sizes of up to 10.8 µm supported
- Little light loss during switching
- Consistently high optical performance
- Silent operation
- Suitable for 24/7 operation

Extended Pixel Resolution (XPR) principle

XPR overview

	XPR-9-2P	XPR-20-4P	XPR-33-4P	XPR-4X-4P
Clear aperture size	9x5 mm	20x20 mm	33x31 mm	Custom designs up to 55 mm
Window tilt angle (standard operation)	0.9°	0.2°	0.3°	0.3°
Beam shift in transmission	3.8 µm (diagonal)	2.7 µm in X & Y	3.8 µm in X & Y	5.4 µm in X & Y
Transition time	1.0 ms	1.2 ms	1.4 ms	1.1ms
Applications	Pico projectors, HMDs	4K Laser TV, 3D printers	High-lumen 4K projectors	Digital cinema, 3D printers

Current solutions

To increase camera resolution

	Smaller pixels	Larger Sensor, bigger optics	Sensor shift	Image shift	
				C C C C C C C C C C C C C C C C C C C	
Frame rate	++	++	+	+	
Light sensitivity (signal to noise)	-	+	+	+	Larger pixels can be used
Flexibility (VIS, SWIR, IR)	-	-	+	++	Can be integrated into objective, or miniaturized into camera
Price	\$ - \$\$	\$\$	\$ - \$\$	\$ - \$\$	
Price of compatible optics	\$	\$\$	\$	\$	

Typical applications & market potential

High resolution (monochrome)

High resolution (color camera)

Display inspection

3D printing

3D scanning

ONE MILLION LENSES IN ONE

OPTOTUNE EL-16-40 LIQUID LENS

THE SWISS SHAPE SHIFTER - FROM CONCAVE TO CONVEX IN JUST A FEW MILLISECONDS