Copyright © 2023 Optotune

Tunable prism TL-12-16

The tunable prism is a tunable wedge that allows to tilt two optically flat and AR coated glass windows with respect to each other. The two glass windows are held together by a bellow structure that is filled with a low dispersion clear optical fluid.

The core element can be integrated with a large variety of actuation principles such as mechanical or motorized lead screws, voice-coil and piezo actuators. Typical applications include laser beam-steering in transmission configuration and alignment between source and detector.

The following table outlines the specifications of our standard tunable prism core element for a particular fluid. Cover glass coatings and fluids can be adapted on demand.

Mechanical specifications

Clear aperture	12	mm
External diameter	16	mm
Thickness	12 ± 0.5	mm
Weight	3.4	g
Max. mechanical tilt angle (center pivot point) ¹	20	degrees

Optical specifications

Max optical deflection @ 525nm	8.2	degree
Refractive index (25°C, @ 525nm)	1.38	
Abbe number V (25°C)	63	
Flatness of windows @ 525nm	0.5	λ
Refractive index vs temperature (dn/dT)	-3.3e-4	1/°C
Transmission spectrum	420-950	nm
Optical damage threshold @ 525nm	Depends on selected coating	kW/cm ²
Absorption	<0.1%	
Polarization change	preserving	
Storage temperature	[-40, +85]	°C
Operating temperature ²	[-40, +85]	°C

 $^{1}\,\mathrm{Max.}$ mechanical tilt angle could be higher for lower number of tilt cycles

² Operating temperature has only been tested to +85°C. From the material compatibility point of view, operating temperature could potentially be higher.

Datasheet: TP-12-16 Tunable prism Update: 06.09.2023

Copyright © 2023 Optotune

Beam deflection

The beam deflection angle θ_d of a ray passing from left to right through a wedge with an wedge (or apex) angle θ_w (Fig. 1) is determined by

$$\theta_d = \sin^{-1}(n \cdot \sin \theta_w) - \theta_w$$

where *n* is the refractive index of the optical fluid inside the wedge. Beam deflection as a function of wedge angle is shown in Fig. 2.

Figure 1: Deflection of beam upon passing a wedge with an apex angle θ_w

Figure 2: Beam deflection as a function of wedge angle

Mechanical Layout

Figure 3: Mechanical drawing of the TP-12-16 (unit: mm)

Optical layout

Figure contains the information needed to model the TP-12-16 for simulations.

Figure 4: Optical layout of the TP-12-16

Page 3 of 5

The ZEMAX model can be downloaded from the website: http://www.optotune.com/downloads

Transmission range

The optical fluid and the two glass windows are highly transparent and hardly absorbing in the range of 250 – 2500 nm. The figures below show the transmission spectrum for the standard extended VIS coating (420-950 nm) assuming normal incidence. By request cover glasses can be coated as desired.

Figure 5: Transmission spectrum of the TP-12-16 with extended VIS coating (420-950 nm)

Auto-fluorescence

The TP-12-16 contains LD material that is not auto-fluorescent and can be used for fluorescence microscopy.

Mounting possibilities

There are various mounting possibilities for the TP-12-16. A simple mechanical gimbal mount based on off-theshelf components is shown in Figure 6.

Figure 6: Example of mechanical mounting of the tunable prism with standard off-the shelf components and 2 adapter rings.

Copyright © 2023 Optotune

The relevant components are listed below:

Component		Description	Supplier
TP-12-16		Tunable prism core ele- ment	Optotune
Adapter rings		Set of 2 adapter rings for TP-12-16	Optotune
GMB1/M		360 Degree Adjustable Gimbal Mount	Thorlabs
FMP1/M	Q	Metric 1" Fixed Mirror Holder	Thorlabs
SM1V10		SM1 Series Variable Lens Tube 1" Travel	Thorlabs

Another possibility is to actuate the TL-12-16 electrically. For this, an off-the-shelf piezoelectric gimbal mount can be used instead of the GMB1/M gimbal mount:

PGM1SE/M	Piezoelectric Gimbal	Thorlabs
	Mount with Strain Gauge	
	Feedback	

Please contact sales@optotune.com to discuss your application.